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Cluster randomized experiments

• Cluster-randomized experiments assign the treatments at the
cluster level, with units within a cluster receiving the same
treatment or control condition

• It helps to avoid interference within clusters and is applicable
when individual-level assignments are logistically infeasible

• Before experiments, researchers often collect covariates at the
individual or cluster level

• Covariate imbalance after treatment assignments often occurs
and complicates the interpretation of the experimental results
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Rerandomization (Contrained randomization)

• Fisher (1926) proposed blocking, or stratification, for
balancing discrete covariates

• Rerandomization is a more general approach to balance
continuous covariates (e.g., Raab & Butcher, 2001; Morgan &
Rubin, 2012, Li et al., 2016)

• The existing design-based theory for rerandomization assumes
that the treatments are assigned at the individual level
(Morgan & Rubin, 2012; Li et al., 2018)



Introduction Cluster rerandomization Cluster rerandomization and regression adjustment Numerical studies

Cluster randomized experiments

• N units grouped into M clusters, M1 clusters assigned to the
treatment arm and M0 clusters to the control arm

• ni : the cluster size of cluster i

• Treatment indicator for cluster and individual
• Zi : the treatment indicator for cluster i

• Zij : the treatment indicator for unit j in cluster i

• Zij = Zi

• N1 treated units, N0 control units. N1 and N0 are random if
the ni ’s vary.

• Two potential outcomes for each unit
• Yij(1): if unit j in cluster i is assigned to the treatment arm

• Yij(0): if unit j in cluster i is assigned to the control arm



Introduction Cluster rerandomization Cluster rerandomization and regression adjustment Numerical studies

Cluster randomized experiments

• Stable Unit Treatment Value Assumption (Rubin, 1980)

Yij = ZijYij(1) + (1− Zij)Yij(0)

• Two types of covariates
• xij = (xij1, . . . , xijK )T: individual-level covariates

• ci = (ci1, . . . , ciK )T: cluster-level covariates

• Average Treatment Effect (ATE)

τ = N−1
M∑
i=1

ni∑
j=1

{Yij(1)− Yij(0)}

• Infer τ based on {Yij ,Zij , xij , ci} for i = 1, . . . ,M, j = 1, . . . , ni
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Design-based inference

• Design-based / randomization-based / model-assisted /
model-free inference

• Yij(1), Yij(0), xij and ci are fixed quantities (finite population)

• Randomness comes only from Z = (Z1, · · · ,ZM)

• neither a fitted regression model nor a super-population model
is assumed

• For a finite population {a1, . . . , aM}
• ā = M−1

∑M
i=1 ai

• varf(a) = (M − 1)−1
∑M

i=1(ai − ā)2 denotes its
finite-population variance

• covf denotes the finite-population covariance

• pra, vara and cova denote the asymptotic probability, variance,
and covariance, respectively
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Two ATE estimators

• The difference-in-means estimator (Hajek estimator) (Su &
Ding, 2021)

τ̂haj = N−1
1

M∑
i=1

ni∑
j=1

ZijYij − N−1
0

M∑
i=1

ni∑
j=1

(1− Zij)Yij

• Horvitz–Thompson estimator (Middleton & Aronow, 2015):

τ̂ht = (NM1/M)−1
M∑
i=1

Zi

ni∑
j=1

Yij−(NM0/M)−1
M∑
i=1

(1−Zi )

ni∑
j=1

Yij
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Two ATE estimators

• Scaled cluster total potential outcome:

Ỹi ·(z) =

ni∑
j=1

Yij(z)M/N

• Observed scaled cluster total potential outcome

Ỹi · = Zi Ỹi ·(1) + (1− Zi )Ỹi ·(0)

• The Horvitz-Thompson estimator derives as

τ̂ht = M−1
1

M∑
i=1

Zi Ỹi · −M−1
0

M∑
i=1

(1− Zi )Ỹi ·

• Su & Ding (2021) showed that M1/2(τ̂? − τ) ∼̇ N (0,V?,ττ )
for ? = ht, haj



Introduction Cluster rerandomization Cluster rerandomization and regression adjustment Numerical studies

Two cluster reranomization schemes

• Define

τ̂ht,c = M−1
1

M∑
i=1

Zici −M−1
0

M∑
i=1

(1− Zi )ci

τ̂haj,x = N−1
1

M∑
i=1

Zi

ni∑
j=1

xij − N−1
0

M∑
i=1

(1− Zi )

ni∑
j=1

xij .

• Cluster rerandomization scheme based on cluster level
covariates:

Mc = {τ̂T
ht,c cov(τ̂ht,c )−1 τ̂ht,c ≤ a}

• Cluster rerandomization scheme based on individual level
covariates

Mx = {τ̂T
haj,xcova(τ̂haj,x)−1 τ̂haj,x ≤ a}
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Jointly asymptotic distribution

Proposition 2.1

Under regularity conditions,

M1/2

(
τ̂haj − τ
τ̂haj,x

)
∼̇ N

(
0,

[
Vhaj,ττ Vhaj,τx

Vhaj,xτ Vhaj,xx

])
,

M1/2

(
τ̂ht − τ
τ̂ht,c

)
∼̇ N

(
0,

[
Vht,ττ Vht,τc

Vht,cτ Vht,cc

])
.
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Jointly asymptotic distribution

• The Mahalanobis distances based on τ̂haj,x and τ̂ht,c converge
in distribution to χ2

K

• We can choose a as the αth quantile of χ2
K to ensure an

asymptotic acceptance rate of α

• Morgan & Rubin (2012) suggested α = 0.001 when the
cluster numbers are moderate or large

• For small M, we can use Fisher randomization tests and
choose the threshold a to ensure non-trivial powers
(Johansson et al., 2021)
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Asymptotic distributions under cluster rerandomization

• Lk,a ∼ D1 | DTD ≤ a where D = (D1, . . . ,Dk)T is a
k-dimensional standard normal random vector

• ε: a standard normal random variable independent of Lk,a

• Squared multiple correlation (Li et al., 2018)

R2
c = cova(τ̂ht, τ̂ht,c )cova(τ̂ht,c )−1cova(τ̂ht,c , τ̂ht)/vara(τ̂ht)

R2
x = cova(τ̂haj, τ̂haj,x)cova(τ̂haj,x)−1cova(τ̂haj,x , τ̂haj)/vara(τ̂haj)

Theorem 1
Under regularity conditions,

M1/2(τ̂haj − τ) | Mx ∼̇ (Vhaj,ττ )1/2{(1− R2
x )1/2ε+ RxLK ,a},

M1/2(τ̂ht − τ) | Mc ∼̇ (Vht,ττ )1/2{(1− R2
c )1/2ε+ RcLK ,a}.
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A comparison between two rerandomization schemes

Corollary 2

Under regularity conditions, if ci = (ni , x̃
T
i · )

T, then

Vhaj,ττ (1− R2
x ) ≥ Vht,ττ (1− R2

c ).

• Parallel to the results of Su & Ding (2021): The
regression-adjusted estimator based on scaled cluster totals
dominates the regression-adjusted estimator based on
individual-level data with properly defined covariates
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Weighted Euclidean distance criterion

• The cluster rerandomization schemes using Mahalanobis
distances view all covariates as equally important

• With prior knowledge about the relative importance of the
covariates, a better choice is cluster rerandomization with the
weighted Euclidean distance (Wight et al., 2002; Althabe et
al., 2008; Li et al., 2016, 2017; Hayes & Moulton, 2017;
Dempsey et al., 2018)

• Cluster rerandomization schemes:

Dx(Ax) = {M τ̂T
haj,xAx τ̂haj,x ≤ a}, Dc(Ac) = {M τ̂T

ht,c Ac τ̂ht,c ≤ a}

• Mahalanobis distance: Ax = M−1cova(τ̂haj,x)−1 and
Ac = M−1 cov(τ̂ht,c )−1

• Weighted Euclidean distance: Diagonal Ax and Ac
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Asymptotic distribution under weighted Euclidean distance
criterion

Theorem 3
Under regularity conditions,

M1/2(τ̂haj − τ) | Dx(Ax) ∼̇

V
1/2
haj,ττ

{
(1− R2

x )1/2ε+ Rxµ
T
x η | ηTV

1/2
haj,xxAxV

1/2
haj,xxη ≤ a

}
,

M1/2(τ̂ht − τ) | Dc(Ac) ∼̇

V
1/2
ht,ττ

{
(1− R2

c )1/2ε+ Rcµ
T
c η | ηTV

1/2
ht,ccAcV

1/2
ht,ccη ≤ a

}
,

where η = (η1, . . . , ηK )T, ε, η1, . . . , ηK are independent N (0, 1),

µT
x = (Vhaj,τxV

−1
haj,xxVhaj,xτ )−1/2Vhaj,τxV

−1/2
haj,xx ,

µT
c = (Vht,τcV

−1
ht,ccVht,cτ )−1/2Vht,τcV

−1/2
ht,cc .
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Properties of asymptotic distributions under cluster
rerandomization

Proposition 2.2

Under regularity conditions, (i) the asymptotic distributions in
Theorem 2 are symmetric around zero and unimodal, and (ii)
pra{M1/2|τ̂haj − τ | < δ | Dx(Ax)} is a non-decreasing function of
R2
x and pra{M1/2|τ̂ht − τ | < δ | Dc(Ac)} is a non-decreasing

function of R2
c for any fixed δ > 0.

• (i) ensures that the asymptotic distributions are both
bell-shaped

• (ii) ensures that the asymptotic distributions are more
concentrated at zero than those under standard cluster
randomization
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Comparing efficiency of different criteria

• We can compare their variance reductions given the same
acceptance rate

• Let α denote the asymptotic acceptance rate:

α = pra{Dx(Ax)} = pra(M τ̂T
haj,xAx τ̂haj,x ≤ a),

α = pra{Dc(Ac)} = pra(M τ̂T
ht,c Ac τ̂ht,c ≤ a)

• Let Γ(·) be the Gamma function and

pK =
2π

K + 2

{
2πK/2

KΓ(K/2)

}−2/K
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Variance expansion

Theorem 4
Under regularity conditions,

vara{M1/2(τ̂haj − τ) | Dx(Ax)} =

Vhaj,ττ{(1− R2
x )+R2

x pKνx(Ax)α2/K + o(α2/K )},
vara{M1/2(τ̂ht − τ) | Dc(Ac)} =

Vht,ττ{(1− R2
c )+R2

c pKνc(Ac)α2/K + o(α2/K )},

for a small α, where

νx(Ax) =
Vhaj,τxV

−1
haj,xxA

−1
x V−1

haj,xxVhaj,xτ det(Ax)1/K det(Vhaj,xx)1/K

Vhaj,τxV
−1
haj,xxVhaj,xτ

,

νc(Ac) =
Vht,τcV

−1
ht,ccA

−1
c V−1

ht,ccVht,cτ det(Ac)1/K det(Vht,cc)1/K

Vht,τcV
−1
ht,ccVht,cτ

.
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Weighted Euclidean distance with optimal weights

Theorem 5
Under regularity conditions, if Vhaj,τxV

−1
haj,xxξk and Vht,τcV

−1
ht,ccξk

are nonzero for all k = 1, . . . ,K, then νx{diag(w1, . . . ,wK )}
reaches minimum if wk ∝ (Vhaj,τxV

−1
haj,xxξk)2 for k = 1, . . . ,K, and

νc{diag(w1, . . . ,wK )} reaches minimum if wk ∝ (Vht,τcV
−1
ht,ccξk)2

for k = 1, . . . ,K.

• Aopt
x and Aopt

c : the optimal weighting matrices

• With orthogonalized covariates, the optimal weighted
Euclidean distance better

• However, this conclusion does not hold if the covariates are
not orthogonalized
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Comparison with cluster rerandomization with tiers of
covariates

• Morgan & Rubin (2015) proposed rerandomization with tiers
of covariates as an alternative to rerandomization with the
weighted Euclidean distance

• No comparison has been made between these two
rerandomization schemes

Theorem 6
Under regularity conditions with orthogonalized covariates,
rerandomization with the optimal weighted Euclidean distance is
better than rerandomization with tiers of covariates.
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Rerandomization and regression adjustment

• Rerandomization uses covariates in the design stage (Morgan
& Rubin, 2012), and regression adjustment uses covariates in
the analysis stage (Lin, 2013)

• Li & Ding (2020) showed that they could be used
simultaneously

• Analogous results hold under cluster rerandomization but
there are some differences
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Regression adjustment under cluster randomized
experiment

• Under Dx(Ax)
• coefficient of Zij in the least squares fit of Yij on

(1,Zij , xij ,Zijxij)

• cluster-robust standard error (Liang & Zeger, 1986)

• Under Dc(Ac)

• coefficient of Zi in the least squares fit of Ỹi· on (1,Zi , ci ,Zici )

• heteroskedasticity-robust standard error (Huber, 1967; White,
1980)

• Regression coefficient and variance estimator: (τ̂ adj
haj , V̂

adj
LZ ) and

(τ̂ adj
ht , V̂

adj
HW )
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Asymptotic results on cluster rerandomization combined
with regression adjustment

Theorem 7
Assume regularity conditions hold.

(i) Under Dc(Ac), the estimator τ̂ adj
ht is consistent for τ and

asymptotically normal, the probability limit of MV̂ adj
HW is larger

than or equal to the true asymptotic variance of M1/2τ̂ adj
ht , and

the 1− ς confidence interval[
τ̂ adj

ht + (V̂ adj
HW )1/2zς/2, τ̂

adj
ht + (V̂ adj

HW )1/2z1−ς/2

]
has asymptotic coverage rate ≥ 1− ς;
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Theorem 7 continued

(ii) Under Dx(Ax), the estimator τ̂ adj
haj is consistent for τ and its

asymptotic distribution is a convolution of normal and
truncated normal, the probability limit of MV̂ adj

LZ is larger than
or equal to the true asymptotic variance of M1/2τ̂ adj

haj , and the
1− ς confidence interval[

τ̂ adj
haj + (V̂ adj

LZ )1/2zς/2, τ̂
adj
haj + (V̂ adj

LZ )1/2z1−ς/2

]
has asymptotic coverage rate ≥ 1− ς;

(iii) If ci = (ni , x̃
T
i · )

T, the asymptotic distribution of τ̂ adj
ht | Dc(Ac)

is more concentrated at τ than τ̂ adj
haj | Dx(Ax), in the sense that

for any δ > 0, we have

pra{M1/2|τ̂ adj
haj − τ | < δ | Dx(Ax)}

≤ pra{M1/2|τ̂ adj
ht − τ | < δ | Dc(Ac)}.
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Simulation setup
• Potential outcomes model:

Yij(z) = g(ni ) + xT
ij βiz + εij(z)

• M = 100, M1 = M0 = 50

• size of each cluster is sampled uniformly from
{m ∈ N | 4 ≤ m ≤ 10}

• k: covariate dimension, ρ: correlation of covariates

Table: Parameters of four scenarios.

Scenario k ρ g(ni )

1 7 0.8 (ni − 7)/2
2 7 −0.15 (ni − 7)/2
3 12 0.4 6
4 10 −0.1 6
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Estimators

• Three orthogonal axes,
• individual-level (X) versus cluster-level (C)

• the Mahalanobis distance (M) versus the optimal weighted
Euclidean distance without orthogonalization (W)

• using regression adjustment (.adj) or not

• Two baseline methods: Hajek (Haj) and Horvitz–Thompson
(HT) estimators without using cluster rerandomization
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Simulation results

−2

−1

0

1

2

1 2 3 4 5 6 7 8 9 10
Scenario 1

τ̂−
τ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 10
Scenario 2

τ̂−
τ

−1

0

1

1 2 3 4 5 6 7 8 9 10
Scenario 3

τ̂−
τ

−1

0

1

1 2 3 4 5 6 7 8 9 10
Scenario 4

τ̂−
τ

1:  ReMC  2:  ReWC  3:  ReMX  4:  ReWX  5:  Haj  6:  HT  7:  ReMC.adj  8:  ReWC.adj  9:  ReMX.adj  10:  ReWX.adj

Figure: Comparison of methods in the simulated example.
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Conclusion

• We study cluster rerandomization with both individual- and
cluster-level covariates, and derive a design-based asymptotic
theory for estimators either with or without regression
adjustment

• We compare cluster rerandomization schemes based on
weighted Euclidean distance and that based on Mahalanobis
distance with tiers of covariates: for orthogonalized covariates,
the former with optimal weights dominates the latter

• When M is small
• Use a mixed-effects model by imposing modeling assumptions

on the data generating process

• Use Fisher randomization tests with studentized statistics
(Zhao and Ding, 2021)
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Thank you!
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